Recop: Finding median of unsorted elements

| 8 .       |                                                   |  |
|-----------|---------------------------------------------------|--|
| <br>Kando | mized Select (A, i)                               |  |
| 1.        | pick j randomly from {1,2,, len(A)} // pirot=A[j] |  |
| 2.        | k = Partition (A.j) // pivot is now at ACk]       |  |
| <br>3.    | If k=i                                            |  |
| 4.        | Return ACK]                                       |  |
| 5.        | EleH k>i                                          |  |
| 6.        | Return Randomized Select (A[1,,k-1], i)           |  |
| 7.        | Else 1/k <i< td=""><td></td></i<>                 |  |
| 8.        | Return Randomized Select (A[k+1,,n],i-k)          |  |
| 9.        | EndIt                                             |  |

Expected Runtime:  $T(n) = \Theta(n)$ 

To turn into deterministic algorithm, we pick the "approx-median" deterministically.

| Determ | ninistic Select (A,i)                         |  |
|--------|-----------------------------------------------|--|
| 1.     | Compute pivot=A(j) that is an "approx-median" |  |
| 2.     | k = Partition (A.j) // pivot is now at ACK]   |  |
| 3.     | If k=i                                        |  |
| 4.     | Return ACK]                                   |  |
| 5.     | ElseH k>i                                     |  |
| 6.     | Return DeterministicSelect (A[1,,k-1], i)     |  |
| 7.     | Else // k < i                                 |  |
| 8.     | Return Deterministic Select (A[k+1,,n],i-k)   |  |
| 9.     | EndIt                                         |  |

## First Attempt to find approx-median:

Take any 3 n elements and find their median. It's 3090 3090.

Guaranteed to be a good 'approx-median'!

$$T(n)=T(\frac{3}{5}n)+T(\frac{7}{10}n)+\Theta(n)$$

## 1. Median and order statistics (cont'd)

Actual Algorithm to find "approx-median" ("median of medians"):



- 1 Partition A into \$\frac{n}{5}\$ sets of size 5 each.
- 2) Compute median of each sot in OU).
- 3) Compute median of these \$\frac{n}{5}\$ medians. that "U be our "approx-median" X.



- How many elements smaller than x? # elements in green area >(7×2)x3=3n
- How many elements greater than  $\chi$ ? # elems in pink area:  $\geq \frac{3}{10} n$

Runtine is now:

$$T(n) = T(\frac{n}{5}) + T(\frac{7}{10}n) + \Theta(n)$$

$$\Rightarrow T(n) = \Theta(n)$$

Same as firstiz min/max!! Also deterministic!!

( Reduce the size of subproblems

| 2. | Lower | found | on | Comparison | Sort |
|----|-------|-------|----|------------|------|
|    |       |       |    |            |      |

All the selecting/sorting algorithms we have seen so far are in the comparison model: we don't are about the actual values in the array, we only care about how they compare to each other (relative order).

Only allowed operation is comparison using this "black-box" M.

√ Transitivity (a>6.6>c ⇒ a>c) Needed for sorting!

- Time cost: # of comparisons (calls to M)

e.g. Finding Max

- 1. curMax = bigger (A[1], A[2])
- 2. For i= 3 ton
- 3. curMax= ligger (A[i], curMax)
- 4. Return currMax

# of comparisons: n-1

Can we compute with fener comparisons?  $x, y, z \ge 2$  comparisons  $w, x, y, z \ge 3$  comparisons

| Claim: Computy maximum of n elements requires > n-1 comparisons.                    |
|-------------------------------------------------------------------------------------|
| Proof: Consider any algorithm that outputs the max:                                 |
| There can be at most are element that has never lost a                              |
| comparison. Otherwise, such of the two elements can potentially be                  |
| · · · · · · · · · · · · · · · · · · ·                                               |
| the max, and the algorithm has no way of telling which one                          |
| is the max.                                                                         |
| Cherefore. n-1 elements must lose at least one comparison.                          |
| But since there is only one loser per comparison, # of comparisons > n-1.           |
|                                                                                     |
| Atternative proof: Consider running the algorithm on input 1,2,, n;                 |
| we claim that each of 1,2,, n-1 must be compared at last                            |
| once to a bigger number, i.e. "lose" a comparison. If, say $k \in \{1, 2,, n \}$    |
| never loses, then we on replace & with n+1. and the algorithm                       |
| wouldn't notice, and still output n (incorrectly).                                  |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
| What about Sorting!                                                                 |
| We can model any comparison-based algorithm                                         |
| What about Sorting? We can model any comparison-based algorithm as a decision tree: |



| Therefore, any algorithm for sorting n elements using comparisons                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Therefore, any algorithm for sorting $n$ elements using comparisons must use at least $\Omega$ ( $nlog n$ ), and in particular run in time $\Omega$ ( $nlog n$ ) in the worst case. |
| in time I (nlog n) in the worst case.                                                                                                                                               |
|                                                                                                                                                                                     |
| Cor: Merge Sort, Quick Sort (with median pivot) are optimal up to a constant,                                                                                                       |
| up to a constant,                                                                                                                                                                   |
|                                                                                                                                                                                     |
|                                                                                                                                                                                     |
|                                                                                                                                                                                     |
|                                                                                                                                                                                     |
|                                                                                                                                                                                     |
|                                                                                                                                                                                     |
|                                                                                                                                                                                     |
|                                                                                                                                                                                     |
|                                                                                                                                                                                     |
|                                                                                                                                                                                     |
|                                                                                                                                                                                     |
|                                                                                                                                                                                     |
|                                                                                                                                                                                     |
|                                                                                                                                                                                     |
|                                                                                                                                                                                     |
|                                                                                                                                                                                     |