Today: Algorithmic Game Theory (AGT)

- Game theory X CS
- Algorithms in "strategic" environments

1. Traffic Networks

Imagine the following two traffic networks with costs.

For Cost X, it means if there are X cars going from S to T, the cost is equal to X. Each driver minimizes their own cost, and we want to minimize average cost. Which network is better?

- It single driver, notwork 2.
- If 100 drivers, and we control where they go, network 2.
- It 100 drivers of free will what happens?

With this A>B shortcut, the first driver to take that path S>A>B>T only has cost 50+51=101<150. More drivers will take this route, when # of drivers reach 50, the cost of new path becomes

150, same as before, so no more improvements as approved to S-A-T.

But drivers in S-B-T has time
200, so they'll switch to S-A-B-T.

In the end, everyone goes S-A-B-T, average cost is 200!
But without A-B. the average was only 150.

1 Braess' Paradox

Key takeauay: when we want to say a network (algorithm/system) is "better", we need to explicitly model how people will use it.

2. Cake, Cutting/Fair Division

Cutting a cake ([0,1]) and divide among n players.

Each player has a different evaluation of the cake $V: S \subseteq [0,1] \rightarrow [0,1]$.

eg. Vi([0, f])=1

Vi([+, 1])=0

Envy-Free: An allocation S.S.,.., S. to n players is envy-free if Vi,j. Vi(Si) > Vi(Sj)

Two players: cut and choose
Player A cuts into 2 pieces, player B chooses first
Three players?
S. S. S.
Player A cuts into 3 pieces, let B&C choose?
What if they want the same piece? How to ensure fairness among B.C?
Idea: Have B"trim" its favorite piece, say S.
to have the same value as its second favorite.
S_{2}^{S} S_{2}^{I}
Now there are two "favorite pieces" for B.
S. S. S.
Now let C chaose between Si, Si, Sz.
Then B choose from the rest, and A gets the remaining.
A: ©
B: ②
C: (3)
C. (<i>O</i>)

