1. Dijkstra's Algorithm

For Single Source Shortest Paths (SSSP)

Recall SSSP:

Input: A graph G=(V,E) with non-negative weights on the edges, and a source SEV. Goal: Find a shortest path from s to any vEV.

Remarks:

- We saw that BFS solves the case where all weights are 1.
- One can also consider negative weights, and there are algorithms for this extension. like Bellman-Ford, running in time 19(11/1E1).
- In some cases we might only care about SEV and one tEV. The time of algorithms for this "single pair" variant is not asymptotically faster.

Dizkstra's Algorithm

Idea: Recall BFS uses a Queue to track the vertices to explore. Now use a Priority Queue instead!

Dijkstra (G.w.s):	
1. For each VEV:	
2. dist(v)=00	
3, parent (v)=1	
4. dist(s)=0	
5. For each vEV:	
6. PQ. Push (v. dist(v))// Add v w/ dist(v)	
7. While !PQ. Is Empty (): as the key	
8. u= PQ. Extract Min()	
9. For VE Adj[u]:	
10. If $dist(v)>dist(u)+w(u,v)$:	
11. $dist(v) = dist(u) + w(u,v)$	
12. parent (v)=u	
13. PQ. Decrease Key (V, dist (v))	

Very Similar to Prins we saw lost lecture!

Q: Why can we run line 13 w/o checking if v is still in PQ?

A: It's guaranteed, otherwise dist(v) < dist(u).

Runtine: IV + IV x T (Push) + IV x T (ExtMin) + IE/ T (Deckey)

W/ Binary Heap, runtime is $\Theta(|V|HEI)\log|VI)$. W/ Fibonacci Heap, runtime is $\Theta(|E|+|V|\log|VI)$.

Correctness: Let S(u,v) be weight of shortest path from u to v.

We prove the following theorem.

Thm: Dijkstra's algorithm terminates with dist (u)= &(s,u) for all uEV.

Proof Sketch:

Loop Invariant: each vertex v that is no longer in PQ (i.e. green) satisfies dist(v)=5(5.v).

Initialization: Trivially True.

Maintenance: Assume the loop inv. holds for all green vertices, and now we are about to color u as green. Consider a shortest path from sto u and let x, y be two consecutive vertices along the path s.t. x is green and y is white.

Notice the following:

1) dist(x)= S(s,x): since x is green and by loop inv.

 \exists dist(y)=S(s,y): this comes from S(s,y)=S(s,x)+w(x,y),

and when we explored Adj[x], we ensured
$dist(y) \leq dist(x) + w(x,y)$. Therefore:
$dist(y) \leq dist(x) + w(x,y)$
$= 5(s,x) + w(x,y) (by \bigcirc)$
=5(s,y)
Moreover, distly) can never be smaller than 5(5y),
So dist(y)=5(s,y) exactly.
3 dist(u)=5(s,u): Notice u is extracted from PQ,
so we have
$dist(u) \leq dist(y) = \delta(s,y) = \delta(s,u)$
This implies dist (u) = 5(su) as dist(u) never
goes below 5 (s,u).
Temination: At termination, PQ is empty, so all vertices are green, and hence satisfy the property dist(v)=5(s,v).
vertices are green, and hence satisfy the
property dist(v)= $S(s,v)$.