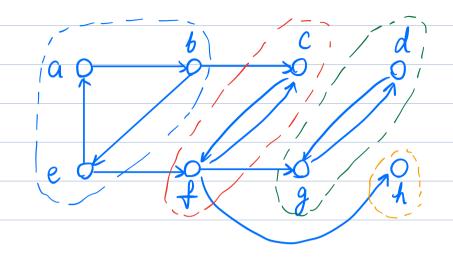
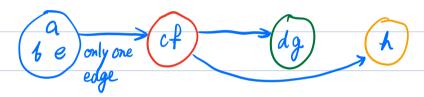
Recop:											
	Cycle	Deteit	ion:	Run	DFS	and	check	for	backuon	d edg	es linish time
	Topolo	gical S	ort:	Run	DPS,	outpi	t verti	ces in	n decre	asing d	linish time
	•	V	•	See	DAG,	think	topologi	cal so	rt!	V	

1. Strongly Connected Components (SCC) (Kosaraju-Sharir 78/81) Strongly Connected: A directed graph G=(V.E) is strongly connected if Vu, v EV, wtv, I path from u to v (and from v to u). Claim: A strongly connected graph must contain a cycle? X. Can be a single vertex. Otherwise, must contain a cycle. u o path u to v + path v to u = cycle! G'= (subset $V'\subseteq V$, edges with both ends in V') Strongly Connected Component (SCC): A subgraph of G that is strongly connected and maximal. We cannot add any other vertices to V' and have it still strongly connected. * Vertices, not vertex: cannot add a or b alone, but can add a and b together

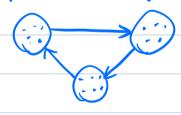




G^{Scc}: Component graph

Claim: The component graph is a DAG.

Proof: A cycle forms a larger SCC. Contradiction!



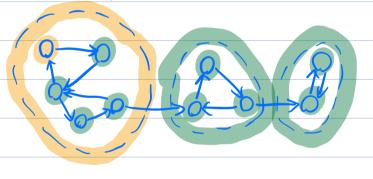
Consider running DFS on G.

We can pretend that this DFS takes place in Gisco in the following way:

- Mark a component discovered (YELLOW) when any of its vertices is discovered
- Mark a component finished (GREEN) when all of its vertices are finished
- A component starts WHITE, then YELLOW, then GREEN

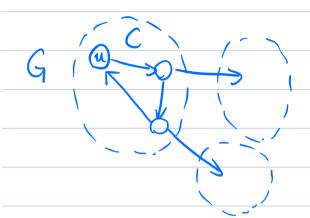
Key Lemma: the "virtual" walk above on Gscc induced by DFS on G is a valid DFS exploration of Gscc.

Proof Idea: When a component C is first discovered, say by a call to DFS-Visit on some uEC, when that call returns, all vertices in C as well as in all components reachable from C by white path, are finished, i.e. GREEN, just like a real DFS visit on G^{scc}.



If we have $C \rightarrow C'$ in G^{scc} , then finish (C) > finish(C'). Therefore, the component with the largest finish time must be the first in the topological sort of G^{scc} .

Observation: the last vertex to finish is the left-most component (in the topological sort of G^{SCC})

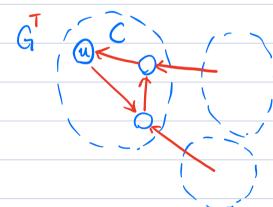


Let's say u is the last vertex to finish.

C is the left-most component.

How do ne find out what vertices

are in C?



We run DFS-Visit (G^T, u).

G^T is a copy of G, with all edges
reversed.

SCC(G):

- 1. Run DFS(G) to compute finish(u) for all uEV.
- 2. Run DFS (GT), but in the main outer loop, consider vertice in order of decreasing finish time.

DFS(G)	
1. time=0	
2. For all uEV:	
3, color(u)=WHITE	
4. parent(u)=1	
5. For all u∈V: ←	— here! Loop by decreasing finish time.
6. If color(u)=WHITE.	
7, DPS-Visit(G,u)	
, , , , , , , , , , , , , , , , , , , ,	

3, DFS in step 2 gives a DFS forest.

Output the vertices of each tree in the forest as a separate SCC.

Runtine: O(1VI+1E1)

If you see directed graph, think SCC!