Recap:
Edge Classification
- Tree Edge: Visit new vertex via edge (i.e. vertex was white)
- Forward Edge: node → descendant in thee
- Backward Edge: node -> ancestor in tree
- Cross Edge: between two non-aniestor related vertices
tree edges
-> : forward edge
- backward edge
: Cross edge
How do we detect type of edge (u, v)?
- Tree Edge: V was white when we explored this edge
— Forward Edge: green — — — —
- Backward Edge: yellow
- Cross Edge green
Cross Edge vs. Forward Edge?
Cross Edge vs. Forward Edge?, Add discovery time (disc) and finish time (finish).
- Forward Edge: V was green & disc(v) > disc(u)
- Cross Edge: V was green & disc(v) < disc(u)
— Gross Edge: V was green X disc (v) < disc (u) (and also finish (v) < disc (u))

Undirected Graphs:
Thm: In DPS of an undirected graph G, every edge is either a tree edge or a bookward edge, i.e. when we first explore {u,v} EE from u, v cannot
either a tree edge or a bookward edge, i.e.
when we first explore {u,v} EE from u, v cannot
be green.
Corollary: An undirected graph is acyclic iff there are no backward edges.
there are no backward edges.

1. Edge Classification (cont'd)

Directed Graphs:

Thm (White-Path Theorem): v is a descendent of u in the DFS forest iff at time disc(u), there exists a path from u to v with only white vertices.

Proof Sketch:

Ouo=u JT Ju, "⇒": Let Uo=u, u, uz,..., uk=v be a path in the ! DFS forest (all edges (vi, vii) are tree edges). Then U. is discovered from us, Uz from U, etc. Therefore, $disc(u_k) > disc(u_{k-1}) > \cdots > disc(u_i) > disc(u_o)$

So at time disc(uo)=disc(u), u, u2, ..., uk are all white.

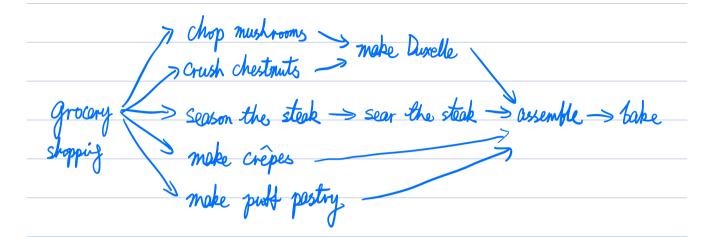
"=": At time disc (40)=disc(4), 4, ..., 4k are all white. We have $disc(u_k) > disc(u_{k-1}) > \cdots > disc(u_n) > disc(u_n)$ $\lim_{x\to \infty} L(u_k) < \lim_{x\to \infty} L(u_{k-1}) < \dots < \lim_{x\to \infty} L(u_{\ell}) <$ Therefore, Uk=V is discovered during the visit from Uo=U, and there must a path from u to v in the DFS forest.

杜

Corollary: A directed graph is acyclic iff DFS finds no backward edges.

Proof: We prove a directed graph is cyclic iff DFS finds a backward edge.
"=": To To To Any backnard edge immediately gives a cycle.
a cycle.
"=>": Assume there is a cycle.
"=>": Assume there is a cycle. Let up be the first vertex discound up uz
in the cycle. So at disc (uo), U, Uz,, Uz are
all white. By white-path than, up is descendent of uo.
Then the edge (up, uo) is a backward edge.
Cycle detection? Peur DFS and look for a backward edge!
2. Topological Sort
Imagine scheduliz a list of tasks, and some tasks must be completed before others.
completed before others
Conference to as s
We can represent such dependencies as a graph!
The name comes from the graph being a "topology".

e.g. to cook Beaf Welligton



Problematic if we have a cycle ... So we have a DAG.

Algorithm:

Input: DAG G=(V,E)

- 1. Run DFSCG)
- 2. Output vertices in descending order of finish time

Runtime: (-)(IV|+IEI). Don't need sorting for step 2. We just add vertices to the front of a turbed list when they finish.

Correctness: The alg. above outputs a topological Sort, i.e. a node is output only after all its parents/dependencies are output.

Proof: We show that for all $(u,v) \in E$, $finish(u) > finish(v)$.
$0 \rightarrow 0$
ū V
Note when we explore (u,v), v cannot be yellow (no backward
edges in a DAG). So v can only be white / green.
- If green, finish(v) already set, but we're still
esploniz u, so finishlu) > finishlv).
-If white, we will recursively visit v. When
recursively call returns, we set finish (v), but
not finish(u). So finish(u) > finish(v).
`
If you see DAG, think topological sort!
Alternative way to do topo. sort: A source in a DAG is a vertex w/o incomiz edges.
A source in a DAG is a vertex w/o incomiz edges.
Each DAG must have a source! (why?)
V
Algorithm:
While there are still vertices left:
Output arbitrary source s,
and remove s and edges out of s from the graph
·

Correctness: V. When we output a vertex v, it is a
Source, meany all its parents have been output & removed.
output & removed.
Runtime: Maintain in-degree for each vertex, and a list
of sources. $\Theta(V + E)$