Recop: DFS: Pick an edge, explore everything going down that edge. then move on to the next edge Gives a DFS tree / Forest AAAA Pseudo-Cade DFS-Visit (G, u) DFS(G) 1. time=0 time t=1 2. For all uEV: disc(u)=time. 3, color(u)=WHITE 3. color(u)= YELLOW 4. parent(u)=1 4. For all $v \in Adj[u]$: 4. parent(u)=15. If color(v)=WHI7E: 5. For all $u \in V$: 6. If color(w)=WHITE. parent(v)=u 7, DFS-Visit(G,u) 7. DPS-Visit (G, v) 8. Color (u) = GREEN 9, time t=1 Runtine: (A(1V |+ |E1) finish(u)= time 10

1. Edge Classification
- Tree Edge: Visit new vertex via edge (i.e. vertex was white)
- Forward Edge: node → descendant in tree
-Backward Edge: node -> ancestor in tree
- Cross Edge: between two non-aniestor related vertices
- tree edges
->: tree dees ->: forward edge ->: backward edge
backward edge
→: Cross edge
V
How do we detect type of edge (u,v)?
- Tree Edge: V was white when we explored this edge
- Forward Edge: green
- Backward Edge: yellow
- Cross Edge green
d
Cross Edge Vs. Forward Edge?
Cross Edge vs. Forward Edge?, Add discovery time (disc) and finish time (finish).
- Forward Edge: V was green & disc(v) > disc(u)
- Cross Gdas: V was amoun & disc(v) < dic(u)
- Cross Edge: V was green & disc(v) < disc(u) (and also finish(v) < disc(u))

Undirected	Graphs:

Thm: In DPS of an undirected graph G, every edge is either a tree edge or a booknand edge, i.e. when we first explore {u,v} EE from u, v cannot be green.

Proof: If v is green, it means we finished exploring its
neighbors, so we should have explored {u,v} from v
already. Contradits with we first explore {u,v} from u.x

Corollary: An undirected graph is acyclic iff there are no backward edges.

Proof: If no backward edges, we only have tree edges, and trees are acyclic.

If we have a tackward edge, &

Directed Graphs:

Thm (White-Path Theorem): v is a descendent of u in the DFS forest iff at time disc(u), there exists a path from u to v with only white vertices.

Proof Sketch:

"=>": Let $U_0=u$, U_1 , U_2 ,..., $U_k=v$ be a path in the |

DFS forest (all edges (u_i , u_{i+1}) one tree edges). Then u, is discovered from u_0 , u_2 from u_1 , etc. Therefore, $disc(u_k) > disc(u_{k-1}) > \cdots > disc(u_1) > disc(u_0)$

So at time disc(uo)=disc(u), u, uz, ..., uk are all white.

"=": At time disc (u0)=disc(u), u,...,ux are all white.

We have $disc(u_k) > disc(u_{k-1}) > \cdots > disc(u_n) > disc(u_n)$

 $linish(u_k) < linish(u_{k-1}) < ... < linish(u_0) < linish(u_0)$

there must a path from u to v in the DFS forest.

Corollary: A directed graph is acyclic iff DFS finds no tackward edges.

Proof: We prove a directed graph is cyclic iff DFS finds a backward edge.
"=": To To To Any backward edge unmediately gives
a cycle.
"=": Assume there is a cycle. Let up be the first vertex discovered uk? "" Let up be the first vertex discovered uk?"
Let us be the first vertex diseased 2 Uz
in the cycle. So at disc (uo), U, Uz,, Uz are
all white. By white-path than, up is descendent of uo.
Then the edge (uk, uo) is a backward edge.
Cycle detection? Ren DFS and look for a backward edge!