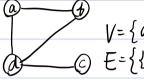
Reca	ρ.
	_

Graphs G=(V,E) rertices edges



$$V = \{a, b, c, d\}$$

$$C = \{\{a, 1\}, \{a, d\}, \{b, d\}, \{c, d\}\}$$

undirected

directed

1. Graphs (cont'd)

Teminology/Notations;

n=[v], m=[E]

Degree of a vertex u: # of edges connected to u (deg (u))

In degree of a vertex u: # edges into u

|{ (v,u): (v,u) e E}|

Out-degree of a vertex u: # edges out of u

Path: Sequence of nodes/edges from one node
to another

e.g. (a,d,b,c,e) ((a,d),(d,b),(b,c),(c,e))

Simple path: a path w/o repeating vertices

e.g. (a.d., b.c.e) is simple path. (a, b, a, d) is not)

Cycle: A path that starts and ends at some vertex,

and does not have repeated edges and vertices

e.g. (a,d,b,a) (apart from first & last vertex)

G is conceted if there is a path b/- every pair of vertices	w
every pair of vertices	a nected components
	Moreover Confirms
Connected	not connected
	not connected
Amplications of Graphs	
- Google Page Rank - Maps	Craffic routiz
- Facebook Social graph - Internet!	Coastie routing
- Many More	V
V	
Graph Representations:	
	
1 Adjacency List	
·	V ₁
Array Adj of IV linked lists. One linked list for each vertex	V ₁
one linked list for each vertex	
In each linked list, Adj [u] stores	Adj
u's neighbors.	
Adj[u]={veV (u,v)EE}	
Default Representation Space: (1/1+1E1)	
-puc (III)	

D Adjacency Matrix |V|×|V| bit-matrix A[u,v]=1 ⇔ (u,v)∈E. Space: Θ(|v|²)

Good if $|E| \approx |v|^2$, very fast for look up if (u, v) exists!

 (ν_{\prime}, ν_{3})

2. Breath-First Search (BFS)

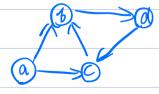
Single Source Shortest Paths (SSSP):

Input: Graph G= (V,E)

& source SEV

Output: shortest path from 5 to

any vEV (if it exists)



s=a 6: a.b)

c: (a,c)

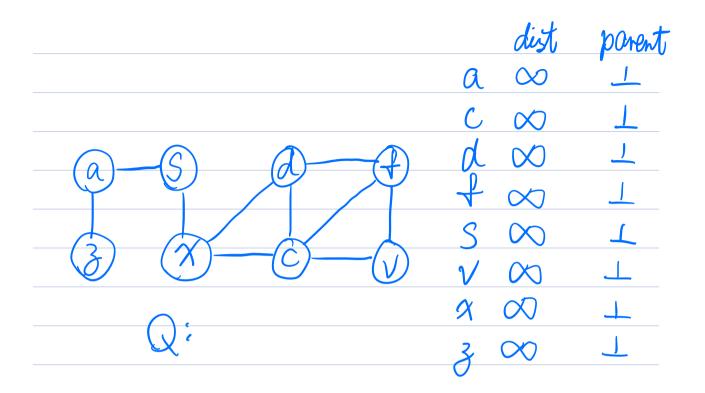
d: (a.b) (b.d)

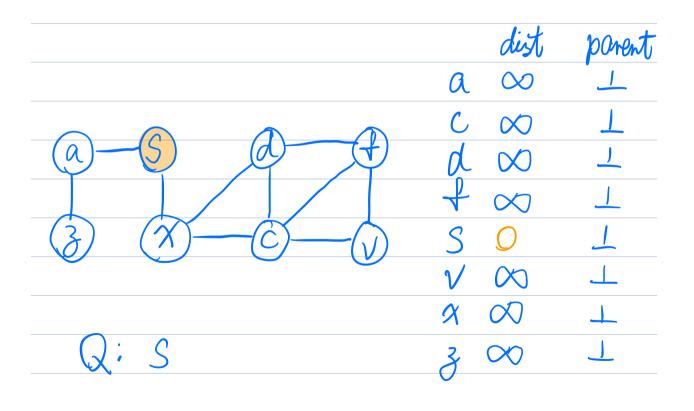
Breadth-First Search (BFS) (a graph exploration problem)
Idea: - look at verties reachable in 0 steps.
steps.
1 steps, 2 steps
- Country to a mostable with a second
Construction representing visit same vertices
- Careful not repeatedly visit same vertices - Work for both directed/undirected
Queue Q: [ak-[bk-C], First-In-First-Out (FIFO)
Onub(d): DEBERED OC.
Q. push(d): Q-BK-EK-Id ()(1)
Q.pop(): a BKCKal O(1)
•

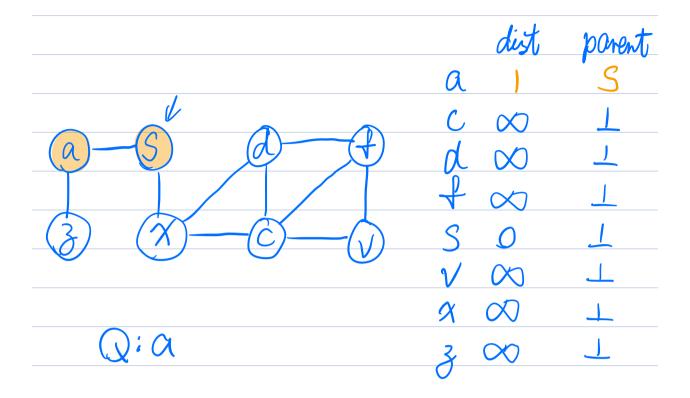
BFS	s(G.s):				
1.	For all vEV:				
2.	$dist(y) \leftarrow \infty$			10	
3,	$perent(v) \leftarrow \bot$				עוע
4,	color (v) WHI	TE			
5.	dist(s)=0				
 6.	Q, push(5)			2001)
7,	Color(s)=YELLOV	V			
8,	While Q is not en	ypty:			
9.	u < Q.popl)	' /			
10.	For all v E	Adj [u]			
[],	It color	(v) = WHITE;			×0(1-1)
12,	dist	(v)= dist (u) +	1		(UEI)
13,	povent	(v)= u		O(1)	
14,	Color	(v)= YELLOW			
15.	Q.pu	sh(v)			
16.	color(u) = G				

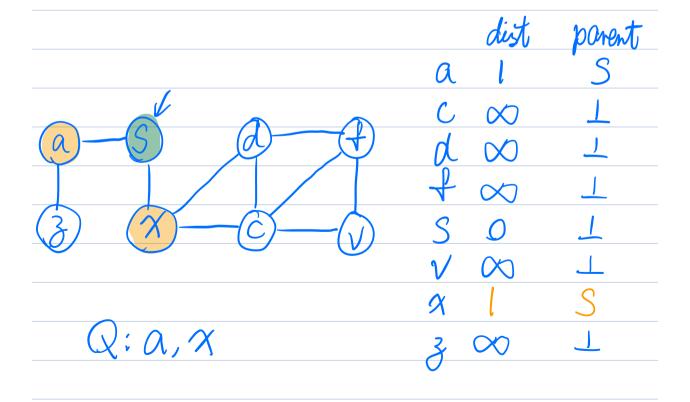
dist(v) gives the shortest distance from S to V

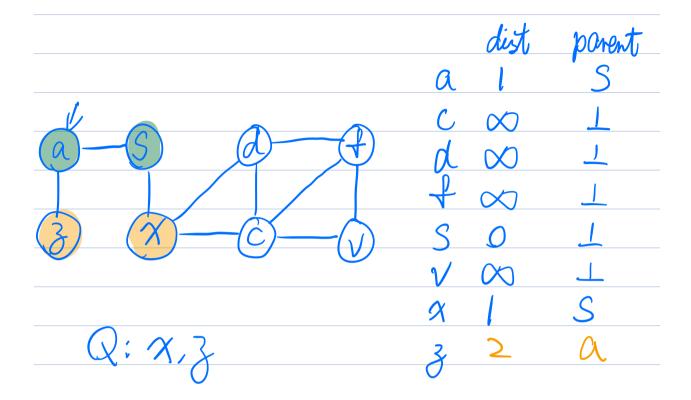
The path? Reverse (v, parent(v), parent(parent(v)),...)

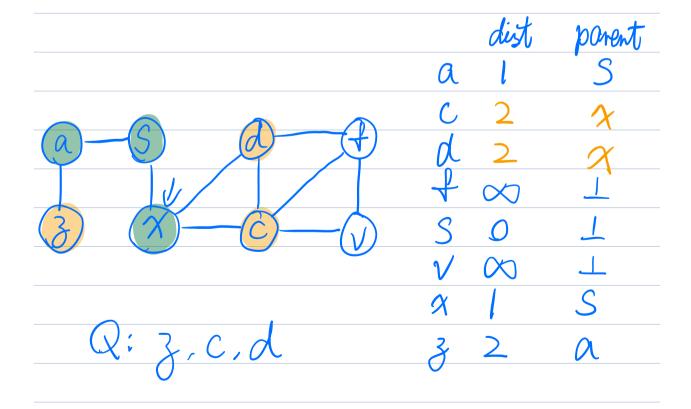


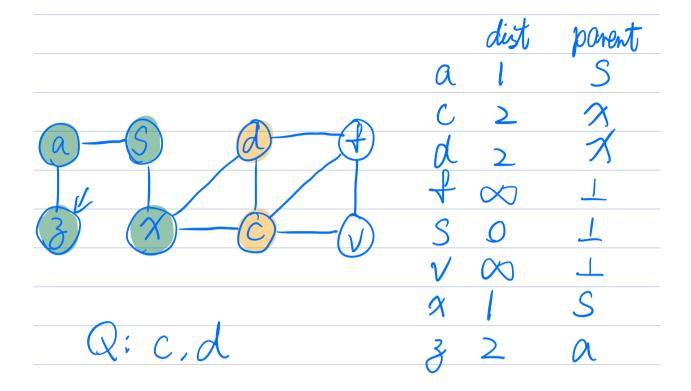


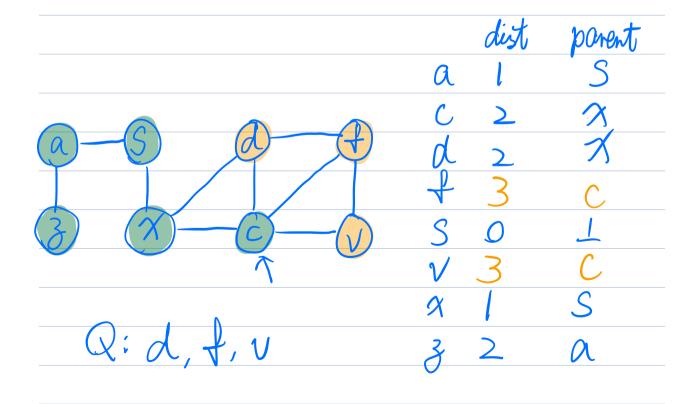


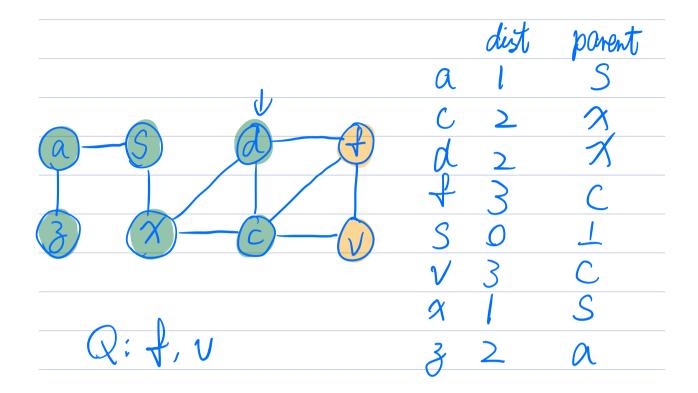


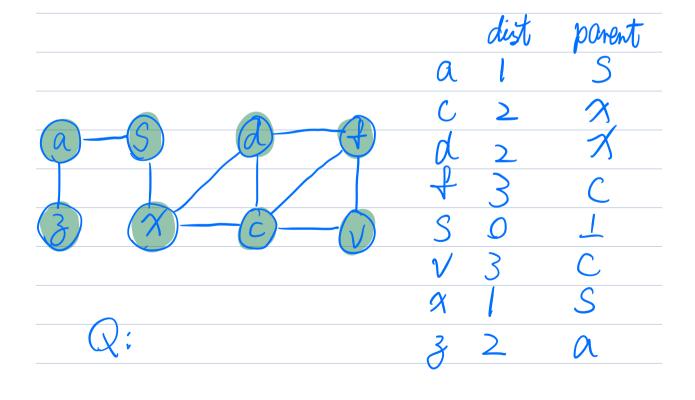












O: vertices not added to Q yet; "undiscovered"
O: vertices currently in Q; "unexplored" O vertices out of Q already; "finished" Coloring kinda overkill here, could use a bool 'visited'!

But will be useful in the future... * Sometimes also colored as O, O, BFS Tree with root s. This gives us a Runtime: (1)(1/1/E1)

Correctness:
Key Lemma: For any u, v, it u added to Q before 1
Key Lemma: For any u, v, it u added to Q before 1 dist(u) ≤ dist(v).
Proof: Loop Invariant:
1 For any two vertices V., V2 currently in Q,
① For any two vertices v_1, v_2 currently in Q , $dist(v_1) \leq dist(v_2) + 1$
3 For any "discovered" (0/0) v., vz,
if v, pushed into Q before Vz,
(> V, popped out before V2,
then dist (v,) \le dist (vz)
Init: \
$\Lambda\Lambda$: Λ

Waintenance;

By invariant @, all vertices in Q are in increasing order of their dist > their dist is at least distlu). but at most dist(u)+1. The new v's we add into Q have dist of dist (u)+1. So everything in Q has distly or distly+1.

1 If not, that means when we're discovering v
(adding it to Q), there is a vertex v' already discovered
with dist(v')> dist(v)= dist(u)+1.
i) if v'odded to Q before u,
$dist(v') \leq dist(u)$, contradiction!
ii) it v'added after u,
that means v'still in Q! By O,
dist(u) = dist(v') = dist(u)+1, contradiction!
Termination: For any u, v, it u added to Q before v, dist(u) < dist(v).
For full proof of correctness, see CLRS §20.2. (optional)