Recop:
Huffman's Gueedy Approach [1952] (build the tree bottom up)
Huffman's Greedy Approach [1952] (build the tree bottom up) 1. Make a node with 2 children leaf nodes for the two
Lowest freg. Symbols y & Z.
2. Replace y & 3 with the "metasymbol" "y3".
2. Replace y & z with the "metasymbol" "yz". its freq. is the sum of freq. of y and z.
3. Rinse & Repeat until we have a single 31 3
metasymbol, it 'U be the root of the 0.05 0.07
huffman tree.

	Pseudoade:			
	Hudfman (S);			
	1. If s =2:			
	2. Return tree with root and two leaves			
	2. Return tree with root and two leaves 3. Let y and z be lowest freq. symbols in S			
	4. S'=S			
	5. Remove y and z from S'			
	6. Insert new symbol w in S'w/ fw=fytfz			
	7. T'= Huddman (S')			
	8. T= add children y and z to leaf w in T'			
	9. Return T			
	step 3			
	Runtime: $T(n)=T(n-1)+O(n) \Rightarrow T(n)=O(n^2)$			
	Optimization: Use a Priority Queue with Insert / Extract Min O(log n) time			
* Covered in CSCI-UA, 102 · Data Structures				
	Implemented W/ Heaps (Binary, Binomial, Fibonaui)		
	>> Step 3,5,6 takes O(lofn) time			
	\Rightarrow Step 3,5,6 takes $O(log n)$ time $\Rightarrow T(n) = T(n-i) + O(log n) \Rightarrow T(n) = O(nlog n)$	n)		
	· · · · · · · · · · · · · · · · · · ·	_		

1. Correctness	(O)	ntimoli	ty	of	Huttman	,)
			$\neg \sigma$			

•	
Claim 1: ABL (T')= ABL (T)- fw	
Proof: T' VS T: in T'. w is lest	W
in T, w has two children	
$f_{W} = f_{y+} f_{z}$ $y \& z$. $depth_{y}(w) = depth_{y}(y) - 1 = depth_{y}(z) - 1$	
$depth_{\tau}(w) = depth_{\tau}(y) - 1 = depth_{\tau}(z) - 1$	F 3
ABL(T) = $\sum_{\alpha \in S} f_{\alpha} depth_{T}(\alpha)$	
= $f_y depth_T(y) + f_z depth_T(z) + \sum_{x \neq y}$	for depth (x)
$= f_y(depth_{T}(w)+1)+f_z(depth_{T}(w)+1)$	+()
$= \{f_y + f_z\} (depth_T(w) + 1) + \{f_z\}$	
= fw depth_(w)+ fw+ ()
= ABLCT')+fw	*
•	

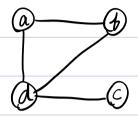
Claim 2: There is always an optimal prefix code that

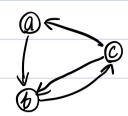
have the two bowest frequency symbols as sibligs.

Proof Sketch: Must both be on the lowest level

> reordering in the same level does not affect optimality.

Thm: Huffman gives a prefix code with optimal ABL.
Pront: Tudusting on n= 15
-Base Case: n=2, ABL is 1, trivially optimal.
-Base Case: n=2, ABL is 1, trivially optimal. - Ind. Hyp.: True for n-1 Symbols
- Indutive stepi
- Inductive stepi By Ind. Hyp., T' for S=(S\2y,z}) U{w} has
optimal ABL since 5' = n-1.
Assume towards contradiction T is not optimal.
⇒ I T* s.t. ABL (T*) < ABL(T)
By claim 2, 7 T* where y and z are siblings.
Let T' be T* with y, z removed and parent
Cabeled w.
By Claim 1: ABL(T')=ABL(T*)-fw
ABL (T')= ABL(T)- fn
⇒ ABL(T+) < ABL(T')
Contradit with T' optimal.
×





undirected

$$V = \{a, b, c, d\}$$

$$E = \{\{a, 1\}, \{a, d\}, \{b, d\}, \{c, d\}\}$$

unordered pairs

directed

$$E = \{(a,b), (b,c), (c,b), (c,a)\}$$

ordered pairs

Teminology/Notations;

Degree of a vertex u: # of edges connected to u (deg (u))

In-degree of a vertex u: # edges into u

|{ (v,u): (v,u)EE}|

Out-degree of a vertex u: # edges out of u

Path: Sequence of nodes/edges from one node

e.g.(a,d,t,c,e) ((a,d),(d,t),(t,c),(c,e))

(Simple path: a path w/o repeating vertices)
(Simple path: a path w/o repeating vertices e.g. (a.d., b.c., e) is simple path, (a, b, a, d) is not)
Cycle: A simple path that starts and ends at same vertex e.g. (a,d,b,a)
vertex
e.g. (a,d,b,a)
G is connected if there is a path b/w every pair of vertices connected components
every pair of verties
Connected components
Connected not connected
Applications of Graphs
Applications of Graphs - Google Page Rank
- Facebook Social graph
- Maps
- Internet / Craffic routing
- Many More

Graph Representations:	
1 Adjacency List	V, V37 >V5
Array Adj of IV linked lists. One linked list for each vertex	V ₂ V ₃ ; ; ; ;
In each linked list, Adj [u] stores u's neighbors.	Nn Adj
Adj [u] = {v \ V \ (u, v) \ \ E} Default Representation	
Space: (1V/+1E1)	
2 Adjacency Matrix (V,, V	/3)

2 Adjoiency Matrix	
•	Vr V2 V3 Vn
V X V bit-matrix	V
$ V \times V $ bit -matrix $A[u,v]=1 \iff (u,v) \in E$	Vz
	V ₂ V ₃ O
Space: $\Theta(v ^2)$	Vn
Good if lE ≈ IV	I very fact for look up
if	(u,v) exists!