1. Huffman Codes
- How does compression work? Lossy (JPG, MPEG. MP3)
VS. Loulers (ZIP, RAR)
- Hulfman (1952)
* grad student back then, did this instead of preparity for finals.
Improved on his professor's work
- Normally, how do we represent a text?
ASCII. 8 bits per symbol (char). Includes many symbols \$,~? ~#
What happens if we only use <32 symbols (a-z, space, comma,)?
Mow we can do 5 bits per symbol. Fixed length encoding.
- Observation: Some symbols are used more often than others!
e,a,t,i vs. w,x,z
"Shortaut": frequent symbols have shorter encodizs
e.g. e -> 1
a → 01 What is "0101"? "aa" or "be"?
b→010
To avoid such ambiguity, we use pretix code (profix-free code).

Dof: A prefix code for alphabet S is a function $c: S \rightarrow \{0,1\}^*$,
s.t. $\forall x, y \in S$, $x \neq y$, $c(x)$ is not a prefix of $c(y)$.
Ue example above is not a prefix code!
eg. a →11
e → 01 10010000001
k→ool reuk
γ >10
u > 0000
Suppose we have a lile of I billion symbols, with
the following frequencies:
Suppose we have a lile of 1 billion symbols, with the following frequencies: $f_{\alpha}=0.32 f_{e}=0.25 f_{k}=0.2 f_{r}=0.18 f_{u}=0.05$
bits/symbol = 2 fat 2 fe + 3 fk+2 fr+4 fu=2.3 bits/symbol
· · · · · · · · · · · · · · · · · · ·
So the file can be represented with 2.3 billion fits.
Det: Average Bits per Letter for presix code c is
$ABL(c) = \sum_{x \in S} f_{x} c(x) $
res

We can model prefix codes as trees.

Greedy Attempt #1; [Shannon-Fano/Fano 1949] Professor of David Huffman Cult Sit Coul Saith of the acceptance of the country
Professor of David Huffman
Split S into S, and S. with almost equal frequencies. then recursively build tree for S, and S.
then recursively build tree for S, and S.
$f_a = 0.32$ $f_e = 0.25$ $f_e = 0.2$ $f_r = 0.18$ $f_u = 0.05$
$fatfr = fetfktfu = 0.5 \Rightarrow S = \{a,r\}, S = \{e,k,u\}$
2.25 bits/symbol 2.26 bits/symbol 2.26 bits/symbol 2.26 bits/symbol 2.27 bits/symbol 2.27 bits/symbol 2.28 bits/sy
2/ \\
a re Optimal ABL is 2.23! So this is sub-optimal.
So this is sub-optimal.
0.2

Hulfman Encoding

Observation/Intuitions:

- 1. Lowest hequency symbols should be at the lowest/deepest level
- 2. The lowest /deepest level always contains at least 2 symbols
- 3. The order of symbols in a level does not matter (we don't care "10110" is "01101")

Huffman's Gueedy Approach [1952] (build the tree bottom up)

1. Make a node with 2 children leaf nodes for the two
Lowest freq. symbols y & z.

3. Rinse & Repeat until we have a single [3] [3]
netasymbol, it 'U be the root of the 0.05 0.07
huffman tree.

	• •	
ŀ	Hwothman (S);	
1.	If 1s1=2:	
2.	Return tree with root and two leaves	
3.	Let y and z be lowest freq. symbols in S	
4.	S'=S	
5.	Remove y and z from S'	
6.	Insert new symbol w in S'w/ fw=fytfz	
7.	T'= Huffman (S')	
8.	T = add children y and z to leaf w in T'	
9.	Return T	