Recap: Dynamic Programmy (DP)				
- DP a "overall brute force"				
- DP ~ subproblems + reuse				
time = # supproblems. time/subproblem (treatize reurine				
- DP ≈ "oreful brute force" - DP ≈ subproblems + reuse time = # subproblems, time/subproblem (treatize reusine alls as (A(1)) > Rod Cutties.				
DRad Cutting				
O				
Guien a n-fect rod, we want to cut it and sell it				
according to the following prices				
length i 1 2 3 4 5 6 7 8 9				
price pi 1 5 8 9 10 17 17 20 24				
"Optimal Substructure"; optimal solution to a problem utilizes				
optimal solutions to related subproblems				
r_= max (pn, r,+rn-1, r2+rn-2,, rn-1+r,)				
\uparrow \uparrow \uparrow				
$r_n = max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2},, r_{n-1} + r_i)$ T T don't cut make cutty cutty at all after 1 ofter 2				
Or:				
OI.				

 $\gamma_{n} = \max(p_{i} + \gamma_{n-1}, p_{1} + \gamma_{n-2}, ..., p_{n-1} + \gamma_{i}, p_{n})$

Bottom-up version:

Again, running time is $O(n^2)$.

Mote: This outputs the revenue only. What if we want to output how to cut?

Memorize "the cut" for each r[i].

1. Longest Common Subsequence (LCS)

- Subsequence: A is a subsequence of B if

 the characters in A appear in

 order in B

 eg. Subsequences of "ALGORTIHM":

 "ALG", "LIT", "AM", "ART"...
- Common: A is both subsequence of B and C
 e.g. "ALGORITHM" "ARTICHOKE"

 have common subsequences "A", "TH", "ART",

 "RTH", "ARTH", etc.
- -Longest: Given two strings, interested in the Longest common subsequence.
- Applications?

 Similarity between DNA sequences

 Version control (Github)

2CS: Given two strings $x \in \Sigma^m$, $y \in \Sigma^n$, find their longest common subsequence. (Σ is the alphabet)

Brute Force?
(1) Find all subsequences of X and y respectively. (2) and then find their intersection,
2) and then find their intersection,
3) and then find the longest one.
Runtime: Q 2 ^m +2 ⁿ
3 sige of the intersection
Overall runtime is exponential!
Observation:
GUACAMOLE GUANCIALE
① The LCS must end with "E"
2) The LCS must end with "LE"
3) The LCS for "CAMO" and "NCIA"
must be either the LCS for "CAM" and "NCIA"
or the LCS for "CAMO" and "NCI".

Formalizing these intuitions:

Thm ("Optimal Substructure"): $X = X_1 X_2 ... X_m$, $y = y_1 y_2 ... y_n$, and $y = y_1 y_1 y_2 ... y_n$, and $y = y_1 y_2 ... y_n$, and $y = y_1 y_2 ...$

1. If $X_m = y_n$, then $y_n = y_n$, and $y_{[1:n-1]}$ is an LCS of $X_{[1:m-1]} \otimes y_{[1:n-1]}$ 2. If $X_m \neq y_n$, then

a) If 3k + xm, then 3 is an 205 of x[1:m-1] and y.

6) If 3k + yn, then 3 is an LCS of X and y[1:n-1].

- Proof: 1. If $z_k \neq x_m$, and $z_k \neq x_m$ and $z_k \neq x_k$ and
 - 2. a. Since $3k \neq \%m$, then 3 must be a common subsequence of % % and %. Say it's not the longest. i.e. $\exists 3' \text{ W/}$ (3') > |3|. then 3' is also a common subsequence of % and %, but longer! Contradiction!

6. Similar argument

DP Algori	thm: two-dimen	sional!	
V	oblems: (For i=0,1		j=0,1,,n, let
			LCS of Muij and y [1:j].
	-		yi, they can't both
_	be used in the	LCS. Whi	h one is not used?
	we make a guess	s here.	
3 Recurren	M0;		
	[^] O		if i=0 or j=0
lcs[i,j] =	lcs[i-1,j-1]+1		if $i=0$ or $j=0$ if $i,j>0$ and $X_i=y_j$ if $i,j>0$ and X_i+y_j
	max(lcs[i-1,j],l	ustij-1])	if i j>0 and xi + y;
	Recursion how o		
	we use memoizat	• •	
#	of subproblems = ((# of i) · (=	# of j)= O(m·n)
_	re/subproblem = (U
	,		, is O(mn), w/
		memoi	zation or bottom-up.
(5) (C))		
			