# 1. Dynamic Programmiz (DP) (Bellman, 1950s) - General, powerful alg. design technique - Especially good for optimization problems

- DP ~ " careful brute force"
- DP a subproblems + reuse

"The Rabbit Proflem"

- Start with a pair of baby rabbits

- Each pair matures in one month, and gives birth to another pair every month starty with the second

- How many pairs of rathets we have at k months?

1, 1, 2, 3, 5, 8, ....

 $F_1 = F_2 = 1$ 

Fibonacii Numbers

Fn=Fn-1+Fn-2 "pair of rabbits currently"

"how many pairs ready to give birth"

Goal: Compute Fn

| Naire Recursion: | fib(n):                      |  |
|------------------|------------------------------|--|
|                  | I+ n < 2:                    |  |
|                  | Return 1                     |  |
|                  | Return Lib (n-1) + Lib (n-2) |  |
|                  |                              |  |

Correctness:  $\sqrt{\text{Runtime}}: T(n)=T(n-1)+T(n-2)+\Theta(1)$  $\geq 2T(n-2)+\Theta(1) \Rightarrow T(n) \geq 2^{N/2}$ 

We're redoing a lot of computation! Fn-1 Fn-2

Maybe we can memoise

these results.

Fn-2 Fn-3 Fn-3

Fn-4

#### Memoized DP Algorithm:

memo={}

fib(n):

If n in memo:

Return memo[n]

If 
$$n \leq 2$$
 $+=1$ 

Else

 $f = fib(n-1) + fib(n-2)$ 

memo[n] =  $f$ 

Return  $f$ 

\* You can do this to any recursive function ( and Python has it built in as of version 3.2)

## Correctness: V Runtime: - fit (k) only recurses the first time it is called. - A memoized call takes O(1) time. - # of non-memoized calls is f(1), f(2), ..., f(n) O(n) runtime DP: memoize (remember) & reuse solutions to subproblems DP & recursion + memoization > time = # Subproblems (time per subproblem) Not county recursions! So no recurrences! V.S. Divide and Conquer: Also have subproblems, but there they're usually disjoint, and we never encounter the same subproblem more than once, so memoization doesn't really help.

Bottom-up DP algorithm:

| 1. fit={}                |  |
|--------------------------|--|
| 2. For k=1 to n:         |  |
| 3. If k≤2;               |  |
| 4. \frac{1}{2}           |  |
| 5. Else:                 |  |
| 6. + fib[k-1] + fib[k-2] |  |
| 7. fib[k]=f              |  |
| 8. Peturn fift[n]        |  |
|                          |  |

Correctness: (n)

Space: n (an be improved to constant)

Any DP alg. On be converted into a bottom-up alg.

| 5 Steps for DP:                                                                     |
|-------------------------------------------------------------------------------------|
| Define Subproblems (#)                                                              |
| @ Guess part of a solution (#)                                                      |
| 3 Recurrence (time/subproblem)                                                      |
| A Recurse + memoize or bottom-up                                                    |
| time = # subproblems · time / subproblem                                            |
| 3 Shre original problem                                                             |
|                                                                                     |
| 2. Rod Cutting                                                                      |
|                                                                                     |
| Guien a n-fect rod, we want to cut it and sell it                                   |
| Guien a n-fect rod, we want to cut it and sell it according to the following prices |
| Greens:                                                                             |
| length i 1 2 3 4 5 6 7 8 9 Rick i with lagest                                       |
| price pi 1 5 6 9 10 17 17 20 24   i. Xeg. 9                                         |
|                                                                                     |
| Brute Force: Check all possible cuttigs! # = 2 1                                    |
| #= 2 <sup>x=1</sup>                                                                 |
|                                                                                     |
| cut/not cut  cut/not cut                                                            |
|                                                                                     |

#### We want to break this into smaller subproblems

Or, we can decompose with a first piece of length i, and then a remainder of length n-i.

CutRod (n):

1. If 
$$n=0$$
:

2. Return 0

3.  $q=-\infty$ 

4. For  $i=1$  to  $n$ :

5.  $q=max(q, pi+CutRod(n-i))$ 

6. Return  $q$ 

Runtime: 
$$T(n)=1+\sum_{i=0}^{n-1}T(i) \Rightarrow T(n)=2^n$$
 (prove by Induction)

Not so surprising since we are kinda bute-forcing here.

### Speed up? Memoization!

#### Cut Rod Meno (n):

- 1. If memo[n] exists:
- 2, Return memo[n]
- 3, (\*)
- 4. memo[n]=9
  - 5. Return 8



Runtine: Me need to compute CutRodllemo (1), ...

recursive calls are free! > O(n), but

# of subproblems = n }  $\Rightarrow G(n^2)$ 

Bottom-up version:

Again, running time is (n2).

Mote: This outputs the revenue only. What if we want to output how to cut?

Memorize "the cut" for each r[i].