Name: Basic Algorithms (Section 7) HW9 (Due 11/20 22:00)
Net ID: Fall 2024 Instructor: Jiaxin Guan

Problem 1 (Cycle Detection, 35 pts)

In this problem you will show how to detect whether an undirected graph G = (V, E) has
a cycle in time O(|V]) (independent of the number of edges).

(a) Prove that an undirected graph with |V| edges must contain a cycle.

(b) The above is not true for directed graphs. What is the maximum number of edges a
DAG with n nodes can have. Briefly justify your answer. (It may help to remember our
maxim: if you see a DAG think about a topological ordering of its vertices!)

(c) Explain how to modify an algorithm from class to detect if the undirected graph G
contains a cycle in O(|V]) time.

Discussion Partners: 1

Name: Basic Algorithms (Section 7) HW9 (Due 11/20 22:00)
Net ID: Fall 2024 Instructor: Jiaxin Guan

Problem 2 (Failed Magic, 20 pts)

In Lecture 17, we saw a magic trick that can turn a BFS algorithm into a DFS algorithm
by simply replacing the queue with a stack. But I mentioned that this magic trick does not
work for all BFS algorithms. In this problem, we will see why.

Below is the BFS algorithm from Lecture 16, but with the queue replaced by a stack
attempting to make it into a DFS. Find a counterexmaple, i.e. construct a graph G =
(V,E) (can be either directed or undirected), such that for some vertex s € V, running
DFS-VISIT(G, s) does not correctly give you a DFS tree. The issue is with the sequence
of vertices that you visit, so you may safely ignore the teal-colored lines for the distances,
as they are not used for DFS.

You should specify the graph G (drawing it out is fine) and the vertex s that you run
DFS on, along with a quick explanation of what goes wrong with the (incorrect) DFS tree
it produces. (Hint: A simple example only needs 3 vertices.)

DFS-VisiT(G, s)

1: for allv e V do
2: dist(v) o0

3: parent(v) < L

4: color(v) < WHITE

5: end for

6: dist(s) <0

7: color(s) < YELLOW

8: Stack.push(s)

9: while Stack is not empty do
10: u < Stack.pop()

11: for all v € Adj[u] do

12: if color(v) = WHITE then
13: dist(v) < dist(u) + 1
14: parent(v) < u

il color(v) « YELLOW

16: Stack.push(v)

17: end if

18: end for
19: color(u) < GREEN
20: end while

Discussion Partners: 2

Name: Basic Algorithms (Section 7) HW9 (Due 11/20 22:00)
Net ID: Fall 2024 Instructor: Jiaxin Guan

Problem 3 (Topological Sort, 20 pts)

How many valid topological sorts does the directed graph below have? List all the valid
topological sorts in the following table. One of them has been listed as an example, where
node A is output first and D is output last.

. AB C F E D

Discussion Partners: 3

Name: Basic Algorithms (Section 7) HW9 (Due 11/20 22:00)
Net ID: Fall 2024 Instructor: Jiaxin Guan

Problem 4 (Number of Simple Paths, 25 pts)

Give an algorithm that given a Directed Acyclic Graph (DAG, defined as a directed graph
without cycles) and two vertices s, ¢, returns the number of simple paths from s to t. Your
algorithm should run in time O(|V| + |E|). Justify the correctness and runtime of your
proposed algorithm. (Your algorithm does not need to list the simple paths, only needs to
give the count.)

(Hint: What is the letter after C? What is the letter before QQ?)

Discussion Partners: 4

