Basic Algorithms (Section 7) Practice Midterm Solution
Instructor: Jiaxin Guan

October 14, 2024

1. This is a practice exam to help you prepare. You do not need to turn it in.

2. You have 75 minutes to complete the real midterm, this exam is intended to be com-
parable in length and difficulty.

3. You may use a double-sided, letter-size “cheatsheet”. The use of phones, computers,
or other reference material during the exam is not permitted.

4. You may use any algorithm or theorem we saw in class (or homework) without proof,
as long as you state it correctly. For all questions asking you to give algorithms, you do
not have to give detailed pseudo-code, or even any pseudo-code. It is enough to give a
clear description of your algorithm. You should additionally give a brief justification
of the correctness and the claimed run time of your proposed algorithm.

5. The structure of the real midterm will be somewhat similar to what is below, but I
might adjust the number of multiple choice/algorithm design questions. In general,
you should expect questions of the following types:

(a) Questions that can be solved if you understood what was presented in class (def-
initions, how the algorithms work).

(b) Questions that can be solved by reducing to something we did in class (e.g. use
some algorithm from class to solve a new problem).

(¢) Questions that can be solved by adapting an idea from class (e.g. Question 2 in
HW?5 asks you to modify the rod cutting DP algorithm to handle unique lengths).

6. This exam contains 5 pages (including this cover page).

Question Points | Score
Multiple Choices 50
k Largest Elements 20
Longest Increasing Subsequence 30
Total: 100

Name: Basic Algorithms (Section 7) Practice Midterm Solution
Net ID: Fall 2024 Instructor: Jiaxin Guan

1 Multiple Choices (50 points)

Choose the best answer for each of the questions below. No justification is needed.
1. Which of the following is not O(nlogn)?o iiiiiiii... (A)
TL2

(A) gy

(B) v/58n - (logn)?
loggs n

(C) 87nossn

(D) n-log(n?)

2. Let f(n),g(n),h(n) be positive functions. Which one of the following statements is
L L PP (C)

(A) If f(n) # o(g
(B) If f(n) =0
(C) If f(n) = O(g(n)), then (f(”) ‘=0
(D) None of the above

3. Suppose we have T'(n) = 27'(n/3) + n and T'(0) = T(1) = 1, which of the following
statements is false? (B)
(A) T(n) = w(n*?)

(B) T(n) = Q(nlogn)
(C) T(n) =0O(nlogn)
(D) T(n) = o(n?)

4. Which of the following is not an example of a divide-and-conquer algorithm? .(D)

(A) QuickSort algorithm for sorting an array
(B) Karatsuba’s algorithm for fast integer multiplication
(C) Deterministic Selection algorithm for finding the median
(D) Gale-Shapley algorithm for stable matching

5. Consider the QuickSort algorithm where we always pick the last element as the pivot
and arrays A =[1,2,3,...,n]Jand B=[n,n—1,n—2,...,1]. Let C4 be the number of
comparisons made when running QuickSort on A, and Cg be the number of comparisons
made when running QuickSort on B. Then we have (B)
(A) C A > C B
(B) Ca=Cp
(C) Ca<Cp
(D) Cannot say anything for arbitrary n

6. Alice comes up with a comparison-based sorting algorithm whose best-case run time is
O(n), and Bob comes up with a comparison-based sorting algorithm whose worst-case

run time is given by the recurrence 7'(n) = 47(n/5) + 5nloglogn. Which of these two
algorithms can possibly be correct? (B)

Page 2 of 5

Name: Basic Algorithms (Section 7) Practice Midterm Solution
Net ID: Fall 2024 Instructor: Jiaxin Guan

(A) Neither Alice’s nor Bob’s
(B) Only Alice’s
(C) Only Bob’s

(D) Both Alice’s and Bob’s

7. The subset-sum problem is defined as follows. Given a set of n positive integers A =
{ai1,as,as,...,a,} and positive integer s, is there a subset of A whose elements sum to
s?
A DP algorithm for solving this problem uses a 2-dimensional Boolean array X, with
n rows and s + 1 columns. The entry X[i, j] for 1 <i <n,0 < j < sis TRUE if and

only if there is a subset of {aj,as,...,a;} whose elements sum to j.
With that in mind, which of the following is valid for 2 <i < mn and a; < j < s? (Ais
the logical AND, and V is the logical OR)o ... (B)
(A) X[i.j) = X[~ 1,3)V X[i.j — ol
(B) X[i,j] = X[i—1,j] v X[i —1,j — aj]
(C) Xl[i,j] = X[i = 1,j] A X[i,j — aj]
(D) X[i,j] = X[i - LjAX[i—1,j—aj
8. Which of the following statements is true? (C)

(A) For the same problem, the DP algorithm with memoizaiton/bottom-up always
performs better than a Divide-and-Conquer algorithm

(B) To justify the correctness of a DP algorithm, it is sufficient to justify the correctness
of the optimal substructure used in the algorithm

(C) There can be more than one possible optimal substructure for a DP problem
(D) None of the above

Page 3 of 5

Name: Basic Algorithms (Section 7) Practice Midterm Solution
Net ID: Fall 2024 Instructor: Jiaxin Guan

2 k Largest Elements (20 points)

Describe an O(n) time algorithm that, given an unordered array of n arbitrary integers,
and an integer k € {1,...,n}, outputs the k largest integers in the array (not necessarily in
order). Justify the correctness and run-time of your proposed algorithm.

The problem is very simple if we assume all elements are distinct: we just use the determin-
istic select algorithm with "median of medians” to select the k-th largest integer, denoted
as x, from the array, and then output all elements > z. It is slightly more complicated if we
allow repetitions.

First, we use the deterministic select algorithm with "median of medians” to select the k-th
largest integer, denoted as x, from the array. Then, we iterate through the array and output
all elements that are strictly greater than x, and keep track of the number of elements we
have output, denoted as m. Lastly, we output k& — m copies of the integer x.

Correctness: By the correctness of the deterministic select algorithm, there must be at least
k elements greater than or equal to x in the array. Furthermore, there must be at most
k — 1 elements that are strictly greater than x in the array (otherwise, the k-th largest ele-
ment will be something greater than). Notice that these elements are among the k largest
numbers, and they are what we output in the second step. Therefore, before the last step,
we have successfully output the m < k — 1 largest elements from the array. The remaining
k — m largest elements must all be x, which is both the largest element remaining and the
(k — m)-th largest element remaining. Therefore, this algorithm correctly outputs the k
largest elements. (To get full credit, your proof of correctness can be way more handwavy
than this. In this particular problem, I would give full credit even for a one-liner.)
Run-time: The deterministic select algorithm from lecture takes linear time. Iterating
through the array takes linear time. Outputting k — m copies of z takes O(k —m) = O(n)
time. Therefore, the run-time is O(n).

Page 4 of 5

Name: Basic Algorithms (Section 7) Practice Midterm Solution
Net ID: Fall 2024 Instructor: Jiaxin Guan

3 Longest Increasing Subsequence (30 points)

Given a sequence of integers of length n, we want to find the length of the longest increasing
subsequence, where the elements monotonically increases. For example, if the input sequence
is 1,7,4,5,8,3,9,6,2, then 1,4, 8 is such a sequence, as well as 7,8,9 and 4, 5, 6.

(a) What is the length of the longest increasing subsequence for the example 1,7,4, 5,8, 3,9, 6, 27
And what is the subsequence that yields this length? (5 points)

(b) Design an O(n?) algorithm that finds the length of the longest increasing subsequence.
You only need to output the length, not the sequence itself. For simplicity, assume all
input numbers are distinct, i.e. no repetitions. Justify the correctness and run-time of
your proposed algorithm. (25 points)

(a) 5. 1,4, 5,8, 0.

(b) Let the sequence be X = wy,x9,...,2,. Fori=0,1,2,...,n, 7 =1,2,....n+ 1, we
define the subproblem LIS(i, j) as the longest increasing subsequence in xy, o, ..., z; where
the entire subsequence is less than x;. We have

0 ifi=0
LI1S(i,j) = ¢ LIS(i—1,j) if i > 1 and z; > x;
max(LIS(i—1,7),LIS(i —1,i)+1) ifi>1andz; <
The answer is given by LI1S(n,n+ 1), where we hard-code x,; = co. The algorithm is then
a memoization/bottom-up implementation of the above DP algorithm.
Correctness: We show optimal substructure and correct base cases. We argue the base case
first. If we don’t have any elements in the sequence, the LIS for sure is going to be 0. Fur-

thermore, L1S(7,j) depends on LIS(i — 1,j) and LIS(i — 1,1), so we will eventually reach
the base case of ¢ = 0. Therefore, we have the correct base case.

Next we argue optimal substructure for L1S(i, j), which should give us the LIS in 21, x, . . ., x;
where the entire LIS is less than x;. Notice that if x; > x;, then x; must not be in the LIS.
So the LIS must be the LIS in x1, 29, ..., x;_1. This corresponds to the second case.

On the other hand, if z; < x;, there are two possibilities: either x; is in the LIS, or not.

e Ifit is not in the LIS, this is the same as before: the LIS must be the LIS in z1, xo, ..., x;_4
and gives LIS(i — 1, 7).

e If x; is in the LIS, then the remainder of the LIS must be < x; in order for it to be an
increasing subsequence. And since z; is used, we can only use elements in x4, ..., z;_1,
which gives us LIS(i — 1,i), and we add one to it to account for z; being selected.

Since we want the longest subsequence, we take the max of these two, and this corresponds
exactly to the third case. (To get full credit, your proof of correctness can be way more
handwavy than this, but it should contain a brief argument about optimal substructure and
correct base cases.)

Run-time: Number of subproblems is (n+1)?, and the time per subproblem is O(1). There-
fore, with memoization/bottom-up, the run-time of this DP algorithm is O(n?) as desired.

Page 5 of 5

